Particle Physics

"The stuff that things are made of"

Elementary Particle

A particle with no internal structure
 Not made out of smaller constituents
 Electrons are elementary particles

The Search for Truth

- By the mid 1930s it was recognized that atoms were made of protons, neutrons and electrons
 - As well we knew of positrons, neutrinos, and γ particles (photons)
- Wave-particle duality allows us to imagine that the electromagnetic force is due to the exchange of photons or γ particles

- 1935, Hideki Yakawa predicted a new particle that would mediate the strong nuclear force
 - Mass between an electron and proton
 - Called a **meson** (in the middle), m≈130 MeV
 - Could be observed (since photons can be observed)
- 1937, a new particle was discovered – m≈106 MeV (close to predicted mass)
 - Did not interact strongly with matter
 - Not the Yakawa particle
 - Called muon, μ
- 1947, C. F. Powell and G. Occhialini discovered the particle Yakawa predicted in cosmic rays
 - Called pi meson or **pion**, π
 - Three charged states: +, -, 0
 π⁺, π⁻ 139.6 MeVc⁻²
 - π⁰ 135.0 MeVc⁻²
 - Interact strongly with matter

• $p + p \rightarrow p + p + \pi^0$

- $p + p \rightarrow p + n + \pi^+$
- Recent theories have replaced mesons with gluons as the particles that mediate the strong nuclear force
- Particle that mediates the weak nuclear force

– W⁺, W⁻, Z⁰

- Detected in 1983
- Gravitation force
 - Graviton
 - Has not yet been discovered
- Other Particles (1950s and 1960s)
 - Kaons, K⁺, K⁻, K⁰
 - Hyperons, Σ^+ , Σ^- , Σ^0

Particles and Antiparticles

- 1932, positron was discovered
- · All particles should have antiparticles
- 1955, antiproton
- 1956, antineutron
- Some particles do not have antiparticles Photons, π^0 , graviton
- When a particle comes in contact with an antiparticle, they annihilate and release energy

Quantum Numbers

- Numbers (or properties) used to characterize particles
 - Electric charge: + or -
 - Spin
- All of the laws of conservation still apply – Energy, momentum, angular momentum

Spin

- In classical mechanics, a body of mass moving in a circular path has a property called angular momentum, measured in Js
- Particles appear to have a similar property also measured in Js

 Called spin
 - Called Spill
- A particle's spin is <u>NOT</u> the same thing as the angular momentum of a spinning body

- For elementary particles, spin is a consequence of Einstein's theory of relativity and does not have a classical counterpart
- All known particles have a spin that is a multiple of a basic unit

unit of spin =
$$\frac{h}{2\pi}$$

- Particles fall into two separate classes when classified according to spin
- All known particles have either an integral spin or a half-integral spin
 - Bosons integral spin
 - A photon is a boson
 Fermions half-integral spin
 - Electrons, protons, and neutrons are fermions
- Particles with spin will align themselves parallel or antiparallel with a magnetic field

Pauli Exclusion Principle

- 1930, Wolfgang Pauli (Austrian)
- It is impossible for two identical fermions to occupy the same quantum state if they have the same quantum numbers

- The Pauli exclusion principle explains why there can only be two electrons in the innermost "shell"
 - Electrons are fermions and thus the principle applies
 - Electrons can only be differentiated by their spin quantum number
 - Since the spin of an electron is ½, we have only two choices: "up" or "down"
- In the outer probability regions things are more complicated, thus more electrons can be in these "shells"

More Quantum Numbers

- In all interactions conservation of energy, momentum, and angular momentum must still occur
- More quantum numbers (conservation laws) were introduced to explain why some reactions occur and others don't
- For example:

 $p+p \not\rightarrow p+p+\overline{p}$ $p+n \rightarrow p+n+\overline{p}+p$

Baryon Number

- All nucleons have B=+1
- All antinucleons have B=-1

 $p + p \rightarrow p + p +$ p $B = 1 + 1 \neq 1 + 1 + -1$ 2 ≠ 1 $p + n \rightarrow p + n +$ p + p B = 1 + 11 + 1 + -1 += 1 2 = 2

Lepton Number

- Ordinary β decay gives electrons and neutrinos or positrons and antineutrinos
- A similar type of decay gives a muon and a neutrino (the antiparticles exist too)
- Another particle called the tau, τ, and its neutrino also exist (the antiparticles exist too)
- These particles are collectively called leptons
- The neutrinos for each particle are different (so are the antineutrinos)
- Three lepton numbers are needed to explain reactions with leptons

	L _e	L_{μ}	L _τ
Electron, e-	+1	0	0
Electron neutrino, v_e	+1	0	0
Muon, μ ⁻	0	+1	0
Muon neutrino, v_{μ}	0	+1	0
Tau, τ-	0	0	+1
Tau neutrino, v_{τ}	0	0	+1

	L_{e}	L_{μ}	L _τ
Positron, e⁺	-1	0	0
Electron antineutrino, $\overline{\nu}_{e}$	-1	0	0
Antimuon, μ^+	0	-1	0
Muon antineutrino, $\overline{v_{\mu}}$	0	-1	0
Antitau, τ^+	0	0	-1
Tau antineutrino, $\overline{v_{\tau}}$	0	0	-1

Particle Classification

Particles are arranged according to their interactions

Hadrons

- · Interact via the strong nuclear force
- Baryons
- Mesons
- Leptons
 - Interact via the weak nuclear force
 - Leptons with charges also interact with the electromagnetic force
- Exchange Bosons
 - Carry the electromagnetic and weak interactions

Strange Particles

- 1950s, certain newly found particles (K, Λ , Σ) were found to behave strangely
- · They were always produced in pairs
- They decayed far too slowly compared with other similar particles
 - $-\Sigma^{-} \rightarrow$ n + π^{-} (half-life of 10⁻¹⁰ s)
 - $-\Sigma^0 \rightarrow \Lambda^0$ + γ (half-life of 10⁻²⁰ s)
 - 10 orders of magnitude smaller

- A new quantum number and conservation law was introduced to account for this strangeness
- The properties of strange particles could then be understood if it was postulated that strangeness is conserved **only** in electromagnetic and strong reactions but is violated in weak interactions
- The strangeness of some hadrons:
 - K⁺, K⁻ S=+1
 - $-\Sigma^+, \Sigma^-, \Sigma^0$ S=-1

Quarks

- 1960s, Murray Gell-Mann proposed that three flavors of a new particle should exist – Quarks
 - up (u), down (d), strange (s)
- The u quark was the lightest of the quarks and was assigned a charge of 3/3|e|
- The d and s quarks were each assigned a charge of -1/3|e|

- The hypothesis was that hadrons could be made out of quarks in just two ways
 - Three quarks make a baryon
 - A quark and an antiquark make a meson
- Only hadrons are made of quarks. Leptons and exchange particles are not
- 1964, several physicists proposed that a fourth quark should exist
 - charmed (c)
 - Assumed to behave like strange
 - First charmed particle was discovered in 1974 \bullet J/ ψ meson
- 1970s, theoretical physicists proposed that two more quarks should exist (6 leptons – 6 quarks)
 - top (t), bottom (b)
 - Originally called truth and beauty
 - New mesons with b were soon detected
 - Strong evidence for the t quark did not appear until 1995
- Quarks are fermions
 - Therefore they have spin=1/2

Some Hadrons

Baryons

- proton, p=(uud)
- neutron, n=(udd)
- Mesons

- pion, $\pi^+=(u\overline{d})$

Explaining Hadrons

• Since hadrons are made of quarks, we can use the properties of quarks to explain many of the properties of hadrons

- Baryon number
- Strangeness

– Spin

Baryon Number

- Baryons are assigned a Baryon number of +1
- Antibaryons are assigned a Baryon number of -1
- Since baryons are made of three quarks, quarks have a baryon number of $\frac{1}{3}$ and antiquarks have a baryon number of $-\frac{1}{3}$
- Thus, mesons (quark and antiquark) have a baryon number of 0

Strangeness of Hadrons

- A hadron is assigned one positive unit of strangeness for every antistrange quark it contains and one negative unit of strangeness for every strange quark it contains
- Examples
 - K⁺ (us), S=+1
 - π⁺ (ud̄), S=0
 - $-\Sigma^+$ (uus), S=-1

Spin of Hadrons

- · Baryons are made of three quarks
- There are only two possible orientations of the spins of the three quarks

• Thus, all baryons must have a spin of $\frac{1}{2}$ or $\frac{3}{2}$

total spin = $\frac{1}{2}$

· So all baryons are fermions

total spin = $\frac{3}{2}$

- Mesons are made of a quark and an antiquark
- Again there are only two possibilities

· Therefore, all mesons are bosons

Color

• An immediate problem appears when one looks at a baryon such as

 Ω^- (sss) spin = $-\frac{3}{2}$

- According to Pauli's exclusion principle, such a particle cannot exist
 - All three quarks are the same and must have the same spin
 - So, all of the quarks are in the same quantum state
- To avoid this problem, a new quantum number needed to be introduced

 Color
- Quarks could be red, blue, or green
- Antiquarks could be antired, antiblue, or antigreen
- Baryons have one quark of each color
 Resulting in "white" or no color
- Mesons have a color and anticolor pair – Resulting in no color
- · Hadrons have no color

Gluons

- Quarks interact via the strong nuclear force
- The particle that mediates this interaction is called a gluon
- The theory of quarks interacting with gluons is called quantum chromodynamics (QCD)

- Gluons also carry color, but their case is somewhat difficult and technical
- A gluon carries two colors
 - One for color
 - One for anticolor
- Theoretically, there can be nine different combinations
 - So we would expect nine gluons
- However, because red-antired, blueantiblue, and green-antigreen are colorless, the "ninth" gluon is a combination of the other eight
- Therefore there are only eight *independent* gluons:

$$G_{R\overline{B}}, G_{R\overline{G}}, G_{B\overline{R}}, G_{B\overline{G}}, G_{G\overline{R}}, G_{G\overline{R}}$$

And two complicated ones:

 $G_{R\overline{R}-G\overline{G}}, G_{R\overline{R}+G\overline{G}+2R\overline{R}}$

Confinement

- The quark idea introduced order
 - The properties of many particles could now be explained in terms of the properties of quarks
- The only problem was that quarks could not be found
- We now have some experimental evidence to indicate that quarks do exists
- However, no free quarks have been
 observed

- Quarks only exist within hadrons
- This leads to the property of **confinement**:
 - It is not possible to observe isolated quarks (and gluons). Quarks inside a hadron always appear in color combinations that result in zero net color.
 - Called quark confinement or color confinement

- The force between the quark and the antiquark is constant no matter what the separation is
- Therefore, the energy required to separate a quark and antiquark gets larger as the separation increases
- To free the quark would thus require an infinite amount of energy

Elementary Particles

- We can now list the elementary particles that constitute all matter:
 - Quarks
 - u, d, s, c, b, t (and the antiquarks)
 - Leptons
 - + e², $\nu_e, \mu^{\text{-}}, \nu_{\mu}, \tau^{\text{-}}, \nu_{\tau}$ (and the antileptons)
 - Exchange particles (exchange bosons)
 γ (photon), W[±], Z⁰, gluons

The Standard Model

- The theory of quarks and leptons is called the standard model of elementary particles
- The standard model has classified the quarks and leptons into three families (or generations)
 - Each family is a copy of the one before but heavier in mass overall

	Leptons	Quarks
1 st family	e ⁻ , v _e	u, d
2 nd family	μ-, ν _μ	s, c
3 rd family	τ, ν_{τ}	b, t

The Higgs Boson

- The Higgs boson is a neutral, spin=0 boson that plays a crucial role in the standard model
- There has been some evidence from CERN indicating that it exists
- It is estimated to have a mass between 120 and 200 GeVc⁻²

- The Higgs boson is closely linked to the mystery of mass
- What exactly is mass and how do elementary particles acquire mass?
- In particular, why do they have the mass they do?
- The mathematics of the electroweak theory prohibits the photon, W and Z bosons from having mass
 - Photons are massless but W and Z are massive

- Peter Higgs devised a mechanism for W and Z to have mass while preserving the theory
- It involved the introduction of a new boson – Called the Higgs boson (neutral, spin=0)
- This particle interacts with the particles in the standard model to give them mass

 In particular W and Z

quarkedproject - The University of Kansas, 2005)

Quarked (http://www.quarked.org/)